Harvesting stored energy

- Energy is stored in organic molecules
 - Heterotrophs eat food (organic molecules)
 - Digest organic molecules to get...
 - Raw materials for building blocks and fuels for energy
 - Controlled release of energy
 - "Burning" fuels in a series of step-by-step enzyme-controlled reactions
 - "Burning" fuels
 - Carbohydrates, Lipids, Proteins and Nucleic Acids

Harvesting energy stored in glucose

- Glucose is the model
 - Catabolism of glucose to produce ATP

\[
\text{Glucose + oxygen} \rightarrow \text{carbon + water + energy + \text{dioxide}}
\]

\[
C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + \text{ATP} + \text{heat}
\]

COMBUSTION = making a lot of heat energy by burning fuels in one step

RESPIRATION = making ATP (& less heat) by burning fuels in many small steps
How do we harvest energy from fuels?

• Digest large molecules into smaller ones
 • break bonds & **move electrons** from one molecule to another
 • as electrons move they “**carry energy**” with them
 • that energy is **stored in another bond**, **released as heat**, or **harvested to make ATP**

\[
\begin{align*}
\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 &\rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{ATP} \\
\end{align*}
\]

How do we move electrons in biology?

• Moving electrons in living systems
 • electrons cannot move alone in cells
 • electrons move as part of **H atom**

\[
\begin{align*}
\text{oxidation} &\quad \text{reduction} \\
\end{align*}
\]

REDOX

Oxidation & reduction

• REDOX reactions in respiration
 • release energy as break down organic molecules
 • break C-C bonds
 • strip off electrons from C-H bonds by removing H atoms
 • \(\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow \text{CO}_2 \) = fuel has been oxidized
 • electrons attracted to more electronegative atoms
 • in biology, the most electronegative atom?
 • \(\text{O}_2 \rightarrow \text{H}_2\text{O} = \) oxygen has been reduced
 • release energy to synthesize ATP

\[
\begin{align*}
\text{oxidation} &\quad \text{reduction} \\
\end{align*}
\]

Oxidation

• Oxidation
 • adding O
 • removing H
 • loss of electrons
 • releases energy
 • exergonic

\[
\begin{align*}
\text{oxidation} &\quad \text{reduction} \\
\end{align*}
\]

Reduction

• Reduction
 • removing O
 • adding H
 • gain of electrons
 • stores energy
 • endergonic

\[
\begin{align*}
\text{oxidation} &\quad \text{reduction} \\
\end{align*}
\]
Moving electrons in respiration

- **Electron carriers** move electrons by shuttling H atoms around
 - $\text{NAD}^+ \rightarrow \text{NADH}$ (reduced)
 - $\text{FAD}^{+2} \rightarrow \text{FADH}_2$ (reduced)

Overview of cellular respiration

- 4 metabolic stages
 - Anaerobic respiration
 - 1. Glycolysis
 - Respiration without O2
 - Occurs in cytosol
 - Aerobic respiration
 - 2. Pyruvate oxidation
 - 3. Kreb’s cycle
 - 4. Electron transport chain

$\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{ATP}$ (+ heat)

What’s the point?

- **ATP Synthase**
 - Proton motive force
 - Conformational changes
 - Bond P to ADP to make ATP
 - Chemiosmosis
 - Allow the H+ to flow down concentration gradient through ATP synthase
 - $\text{ADP} + P_i \rightarrow \text{ATP}$

The Point is to Make ATP!
Got the Energy?
Ask Questions!