AP Biology

Chemistry of Life

Properties of Water

Why are we studying water?

All life occurs in water
- inside & outside the cell

More about Water

Elixir of Life

• Special properties of water
 1. cohesion & adhesion
 • surface tension, capillary action
 2. good solvent
 • many molecules dissolve in H₂O
 3. lower density as a solid
 • ice floats!
 4. high specific heat
 • water stores heat
 5. high heat of vaporization
 • heats & cools slowly

Chemistry of water

• H₂O molecules form H-bonds with each other
 – +H attracted to –O
 – creates a sticky molecule

1. Cohesion & Adhesion

• Cohesion
 – H bonding between H₂O molecules
 – water is “sticky”
 • surface tension
• Adhesion
 – H bonding between H₂O & other substances
 • capillary action
 • menticut
 • water climbs up paper towel or cloth
 • Drinking straw

How does H₂O get to top of trees?

Transpiration is built on cohesion & adhesion

Ice! I could use more ice!
2. Water is the solvent of life

- Polarity makes H₂O a good solvent
 - polar H₂O molecules surround + & – ions
 - solvents dissolve solutes creating solutions

What dissolves in water?

- **Hydrophilic**
 - substances have attraction to H₂O
 - polar or non-polar?

What doesn’t dissolve in water?

- **Hydrophobic**
 - substances that don’t have an attraction to H₂O
 - polar or non-polar?

3. The special case of ice

- Most (all?) substances are more dense when they are solid, but not water...

- **Ice floats**
 - H bonds form a crystal

- H bonds are stable

Why is “ice floats” important?

- Oceans & lakes don’t freeze solid
 - *surface ice insulates water below*
 - allowing life to survive the winter
 - if ice sank...
 - ponds, lakes & even oceans would freeze solid
 - in summer, only upper few inches would thaw
 - *seasonal turnover of lakes*
 - sinking cold H₂O cycles nutrients in autumn
4. Specific heat

- \(\text{H}_2\text{O} \) resists changes in temperature
 - high specific heat
 - takes a lot to heat it up
 - takes a lot to cool it down

- \(\text{H}_2\text{O} \) moderates temperatures on Earth

5. Heat of vaporization

- Water ionizes
 - \(\text{H}^+ \) splits off from \(\text{H}_2\text{O} \), leaving \(\text{OH}^- \)
 - if \([\text{H}^+] = [\text{OH}^-]\), water is neutral
 - if \([\text{H}^+] > [\text{OH}^-]\), water is acidic
 - if \([\text{H}^+] < [\text{OH}^-]\), water is basic

- \(\text{pH} \) scale
 - how acid or basic solution is
 - \(1 \rightarrow 7 \rightarrow 14 \)

Ionization of water & \(\text{pH} \)

- Dissociation of water
 - \(\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^- \)

Buffers & cellular regulation

- \(\text{pH} \) of cells must be kept \(\sim 7 \)
 - \(\text{pH} \) affects shape of molecules
 - shape of molecules affect function
 - \(\text{pH} \) affects cellular function

- Control \(\text{pH} \) by buffers
 - reservoir of \(\text{H}^+ \)
 - donate \(\text{H}^+ \) when [\(\text{H}^+ \)] falls
 - absorb \(\text{H}^+ \) when [\(\text{H}^+ \)] rises

- \(\text{H}^+ \) ion concentration & examples of solutions

- \(\text{pH} \) scale & examples of solutions

- Buffers & cellular regulation

- Tenfold change in \(\text{H}^+ \) ions

- \(\text{pH} \) scale & examples of solutions

- Buffers & cellular regulation
Do one brave thing today...then run like hell!

He's gonna earn a Darwin Award!

Any Questions?