Cellular Respiration

Stage 1: Glycolysis

What's the point?

The point is to make ATP!

ATP

Glycolysis

- Breaking down glucose
 - "glyco – lysis" (splitting sugar)

Overview

10 reactions

- convert glucose (6C) to 2 pyruvate (3C)
- produces: 4 ATP & 2 NADH
- consumes: 2 ATP
- net yield: 2 ATP & 2 NADH

Evolutionary perspective

- Prokaryotes
 - first cells had no organelles
- Anaerobic atmosphere
 - life on Earth first evolved without free oxygen (O_2) in atmosphere
 - energy had to be captured from organic molecules in absence of O_2
- Prokaryotes that evolved glycolysis are ancestors of all modern life
 - ALL cells still utilize glycolysis

Glycolysis

- ancient pathway which harvests energy
- where energy transfer first evolved
- still is starting point for **ALL** cellular respiration
- but it’s inefficient
- generates only **2 ATP** for every **1 glucose**
- occurs in cytosol

In the cytosol? Why does that make evolutionary sense?

That’s not enough ATP for me!

Enzymes of glycolysis are "well-conserved"

Glycolysis summary

- endergonic invest some ATP
- exergonic harvest a little ATP & a little NADH

Net yield

- 2 ATP
- 2 NADH
1st half of glycolysis (5 reactions)

Glucose “priming”
- Get glucose ready to split
 - Phosphorylate glucose
 - Molecular rearrangement
- Split destabilized glucose

2nd half of glycolysis (5 reactions)

Energy Harvest
- NADH production
 - G3P donates H
 - Reduces NAD⁺
 - NAD⁺ → NADH
- ATP production
 - G3P → → pyruvate
 - PEP sugar donates P
 - "Substrate level phosphorylation"
 - ADP → ATP

Energy accounting of glycolysis
- Net gain = 2 ATP + 2 NADH
 - Some energy investment (2 ATP)
 - Small energy return (4 ATP + 2 NADH)
- 1 6C sugar → 2 3C sugars

Substrate-level Phosphorylation
- In the last steps of glycolysis, where did the P come from to make ATP?
 - The sugar substrate (PEP)

P is transferred from PEP to ADP
- Kinase enzyme
- ADP → ATP

But can’t stop there!

Glycolysis
- Going to run out of NAD⁺
 - Without regenerating NAD⁺, energy production would stop!
 - Another molecule must accept H from NADH
 - So NAD⁺ is freed up for another round

Is that all there is?
- Not a lot of energy...
 - For 1 billion years*, this is how life on Earth survived
 - No O₂ = slow growth, slow reproduction
 - Only harvest 3.5% of energy stored in glucose
 - More carbons to strip off = more energy to harvest

*Holmdel High School
How is NADH recycled to NAD\(^+\)?

Another molecule must accept H from NADH

\[\text{Pyruvate} \rightarrow \text{Ethanol} + \text{CO}_2 \]

Fermentation (anaerobic)

- Bacteria, yeast
 - beer, wine, bread
 - Animals, some fungi
 - cheese, anaerobic exercise (no O\(_2\))

Alcohol Fermentation

- Dead end process
 - at ~12% ethanol, kills yeast
 - can't reverse the reaction

Lactic Acid Fermentation

- Reversible process
 - once O\(_2\) is available, lactate is converted back to pyruvate by the liver

Pyruvate is a branching point
And how do we do that?

- ATP synthase
 - set up a H^+ gradient
 - allow H^+ to flow through ATP synthase
 - powers bonding of P_i to ADP

$$ADP + P_i \rightarrow ATP$$

But... Have we done that yet?

NO!
There’s still more to my story!
Any Questions?